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Motivation
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Who Needs Numerical Methods

Macro economists.

Micro economists: Dynamic games and dynamic contracts.

Applied economists: Estimate (non-)parametric models.

Econometricians: Bootstrapping and simulations.
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A Simple Growth Model

V (k, z) = max
c,k ′

{
ln(c) + βEV (k ′, z ′)

}
c = y − i

k ′ = (1− δ)k + i , 0 ≤ δ ≤ 1

y = zkα

z ′ = P(z).

Goal: Find the policy function (and value function) kt+1 = ϕ(kt , zt).

The ”most basic” macro model, yet analytical solution only with δ = 1.
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Algorithm Solving the Model

1 Discretize a grid for the state k and z .

2 Guess the (continuous and concave) value function V 0(k, z).

3 Solve V n(k , z) = max
c,k ′

{
ln(c) + βEV n−1(k ′, z ′)

}
.

4 Replace last iteration guess by new solution V n−1 = V n.

5 Iterate until |V n − V n−1| < crit.
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Limits to VFI

This is great, but many problems are more complex.

Household has assets, at , and housing, ht , and decides at+1, ht+1.

It earns its productivity exp(zt).

Log productivity follows a Markov chain: Pjk(zt+1 = z j |zt = zk).

ct + at+1 + ht+1 = at + ht + exp(zt).
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Limits to VFI II

V (a, h, z) = max
c,a′,h′

{
U(c , h) + βEV (a′, h′, z ′)

}
Two endogenous dynamic state variables at and ht .

One exogenous state variable zt .

Assume I discretize Na = 1000, Nh = 1000, Nz = 5, these are
5,000,000 state combinations with 1,000,000 choices.

5,000,000,000,000 computations of U(c, h) + βV (a′, h′, z ′) and
finding 5,000,000 times the maximum for one update of V !
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Two Controls
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Concepts

Consider a problem with one state variable (size N1) and two controls
(sizes N1 and N2).

We could construct two grids, one for each control.

For each iteration of the value function we need to solve ∀N1,
N1 X N2 possible choices.

Sometimes, first-order conditions suggest something simpler.
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Two Controls

Neo-classical growth model with labor l :

V (k , z) = max
c,k ′,l

{(
cθ(1− l)1−θ

)1−τ

1− τ
+ βEV (k ′, z ′)

}
c + k ′ = zkαl1−α + (1− δ)k

ln(z ′) = ρln(z) + ϵ′

Find ϕc(k, z), ϕl(k , z). The first order conditions imply:

c

1− l
=

θ

1− θ
(1− α)zkαl−α

Knowing optimal policy ϕc(k , z), this is a non-linear root finding problem
in l .
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Two Controls II

One way to solve the problem is:

1. Guess optimal policy for labor, ϕl(k , z).

2. Solve for optimal policy for consumption c = ϕc(k, z).

3. Solve FOC for optimal ϕl(k , z).

4. Iterate until convergence.

For step (3) we need a root-finding algorithm.
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Newton-Raphson Method for Root Finding

Newton method uses first order approximation to function.

First order approximation around guess x0:

f (x) ≈ f (x0) + f ′(x0)(x − x0).

Setting f (x) = 0 and solving for x gives new guess:

x ′ = x0 − f (x0)
f ′(x0)

.

The tangent intersects the x-axis.

This requires numerical differentiation (in one second)!
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Modified Newton-Raphson Method

When the objective function is close to flat around x0, the linear
approximation may lead to a poor prediction.

Function may not be defined at x ′.

Reformulating the problem is often possible.

The Modified Newton-Raphson Method updates slowly λ ∈ [0, 1]:

x ′ = x0 − λ f (x0)
f ′(x0)

.
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Multivariate case

The method can be extended straightforward to the multivariate case:

f(x) = 0 ⇔


0 = f 1(x1, ...., xn)

...

0 = f n(x1, ...., xn)

Define the Jacobian:

J(a) =


f 11 f 12 f 13 . . . f 1n
f 21 f 22 f 23 . . . f 2n
...

...
...

. . .
...

f n1 f n2 f n3 . . . f nn

 , f ij =
∂f i (x)

∂xj
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Multivariate case II

If J(x) is Libschitz (sufficient: continuous differentiable), then approximate

f(x) ≈ f(x0) + J(x0)(x− x0),

with solution
x′ = x0 − λJ(x0)

−1f(x0).

Wellschmied (UC3M) Basic Numerical Concepts 15 / 107



Numerical Differentiation

For this algorithm, we need to compute

f ′(x) = lim
h→0

f (x + h)− f (x)

h
.

Simplest method called one sided approximation:

f ′(x) ≈ f (x+h)−f (x)
h . Slope error proportional to h
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Numerical Differentiation II

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Two sided approximation:

f ′(x) ≈ f (x+h)−f (x−h)
2h . Slope error proportional to h2.
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Numerical Differentiation III

f ′(x) = lim
h→0

f (x + h)− f (x)

h

Five point method:

f ′(x) ≈ −f (x+2h)+8f (x+h)−8f (x−h)+f (x−2h)
12h .

Slope error proportional to h4.
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Alternatives to ”Standard” VFI
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Methods Relying on FOCs
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Projection Method

Consider the Neo-classical growth model without labor:

c−γ
t = E

{
βc−γ

t+1(αzt+1k
α−1
t+1 + (1− δ))

}
ct + kt+1 = ztk

α
t + (1− δ)kt

ln(zt+1) = ρln(zt) + ϵt+1

ϵt+1 ∼ N(0, σ2)

Rational expectation solution:

ct = c(kt , zt)

kt+1 = k(kt , zt)
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Reformulating the Problem

c(kt , zt)
−γ = E

{
βc (kt+1, zt+1)

−γ (αzt+1k
α−1
t+1 + (1− δ)

)}
Substitute in the budget constraint:

c(kt , zt)
−γ − E

{
βc (ztk

α
t + (1− δ)kt − c(kt , zt), zt+1)

−γ

(αzt+1 (ztk
α
t + (1− δ)kt − c(kt , zt))

α−1 + (1− δ))
}
= 0

Which is at each grid point ki , zi a root-finding problem in optimal
consumption.
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Idea of Projection Methods

Idea, approximate policy function by a known function:

c(kt , zt) ≈ Pn(kt , zt ; νn).

Usually, Pn of polynomial class.

Euler equation needs to hold at each grid point i .
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Projection Method II

Substituting c(ki , zi ) ≈ Pn(ki , zi ; νn):

e(ki , zi ; νn) = Pn(ki , zi ; νn)
−γ − E

{
βPn(k

′, z ′; νn)
−γ(αz ′k ′α−1 + (1− δ))

}
Inserting budget constraint and law of motion:

e(ki , zi ; νn) = Pn(ki , zi ; νn)
−γ−

E
{
βPn(zik

α
i + (1− δ)ki − Pn(ki , zi ; νn), exp(ρln(zi ) + ϵ′); νn)

−γ

[αexp(ρln(zi ) + ϵ′)(zik
α
i + (1− δ)ki − Pn(ki , zi ; νn))

α−1 + (1− δ)]
}
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Projection Method III

Approximating integral by J Hermite Gaussian quadrature nodes:

e(ki , zi ; νn) = Pn(ki , zi ; νn)
−γ−

J∑
j=1

[
β
ωj√
π
Pn(zik

α
i + (1− δ)ki −Pn(ki , zi ; νn), exp(ρln(zi ) +

√
2σξj); νn)

−γ

[αexp(ρln(zi ) +
√
2σξj)(zik

α
i + (1− δ)ki − Pn(ki , zi ; νn))

α−1 + (1− δ)]
]

This can be solved for νn at each grid point to minimize e(ki , zi ; νn).
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Projection Method IV

We have to fix ki , zi .

Chebyshev nodes have good convergence properties.

We have to find the parameters νn.

Collacation (M = N): Use a function solver to solve for
e(ki , zi ; νn) = 0 at all grid points.

Galerkin (M > N), minimize e(ki , zi ; νn).
For example, Gauss-Newton algorithm.

The latter requires to evaluate (X
′
X )−1.

Chebyshev polynomial avoids multicollinearity.
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Function approximation

Assume you want to approximate g(x) by a known function f (x):

g(x) ≈ f (x).

In our case: c(k , z) ≈ Pn(k, z ; νn).

(One-dimensional) Polynomials:

f (x) = ν0T0(x) + ν1T1(x) + ν2T2(x)...+ νnTn(x)

Weierstrass Theorem: A continuous, real valued function on a
bounded interval can be approximated arbitrary well by a
polynomial.

Splines are an alternative:

Piecewise polynomial functions.
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Increasing Polynomial Order

f (x) = ν0 + ν1x + ν2x
2 + ...+ νnx

n.
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Chebychev Polynomial

One important type has the basis function:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x)

g(x) ≈
n∑

j=1

νjTj(x)

Defined on the interval [−1, 1], but we can always transform a
continuous function.

If space S = [a, b] map into [−1, 1] by 2 s−a
b−a − 1.
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Why Use Chebychev Polynomial?

Chebychev polynomials help avoid multicollinearity∫ b
a Ti (x)Tj(x)w(x)dx = 0.

This is helpful when evaluating (X
′
X )−1.
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Chebyshev Nodes

In projection methods, we usually create the grid using Chebychev nodes.
n Chebychev nodes are the roots to the nth Chebyshev basis function:

Tn(x) = 0

For example, to create n = 3 Chebychev nodes:

T3(x) = 4x3 − 3x = 0

x = [−
√
3/4 0

√
3/4].
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Why Use Chebyshev Nodes?

Chebyshev nodes can also be useful outside projection methods. In
structural modeling, we are often free to choose nodes at which to

approximate:

V (a) ≈ f (a) ∀a ∈ A

A could be a linear grid of length n in [a, a]. It can also be the nth

Chebyshev nodes in [a, a].

Chebychev nodes have desirable convergence properties given an initial
coefficient guess ν0n !
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Numerical Integration

We need to know Ec(kt+1, ρln(zi ) + ϵ′)−γ , where ϵ′ ∼ N(µ, σ2). Generally,
in economics, we often need to calculate:∫ b

a
f (x)dx

An integral is an infinite object.

We need to calculate a finite approximation.
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Numerical Integration II

Numerical integration replaces the integral by a finite sum:∫ b

a
f (x)dx ≈

J∑
j=1

ωj f (ξj)

ξj is the node j at which we evaluate the function.

ωj is the weight for node j .

This gives 2J free parameters.
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Gauss-Legendre

Let us start with the following problem:∫ 1

−1
f (x) ≈

J∑
j=1

ωj f (ξj)

Idea: Choose ξj , ωj such that approximation is accurate for functions

that can be approximate by polynomials of degree 2J − 1.∫ 1

−1
x idx =

J∑
j=1

ωjξ
i
j , i = 0, 1, ...2J − 1.

Yields 2J equations in 2J unknowns.

Note, the choices of ξ and ω do not depend on f ! Only the
evaluations f (ξj) do.
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Gauss-Hermite

Now assume a function g(x) can be approximated by polynomial, and we
can write

f (x) = g(x)W (x)

Gauss-Hermite uses W (x) = e−x2 and domain is the real line:

∫ ∞

−∞
x ie−x2dx =

J∑
j=1

ωjξ
i
j , i = 0, 1, ...2J − 1.

So we approximate:

∫ ∞

−∞
g(x)e−x2dx ≈

J∑
j=1

ωjg(ξj).
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Expectations of a Normally Distributed Variable

We want to compute E(g(x)), where x ∼ N(µ, σ2):

E(g(x)) =
∫ ∞

−∞

g(x)

σ
√
2π

exp
(
− (x − µ)2

2σ2

)
dx

Define auxiliary variable y = (x−µ)√
2σ

, with x = h(y) =
√
2σy + µ. Now use

integration by substitution:∫ b

a
g(x)dx =

∫ h−1(b)

h−1(a)
g(h(y))h′(y)dy with x = h(y).
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Expectations of a Normally Distributed Variable II

E(g(x)) =
∫ ∞

−∞

g(x)

σ
√
2π

exp
(
− (x − µ)2

2σ2

)
dx

=

∫ ∞

−∞

g(
√
2σy + µ)

σ
√
2π

exp
(
− y2

)
σ
√
2dy

=

∫ ∞

−∞

g(
√
2σy + µ)√

π
exp

(
− y2

)
dy

So, we have:

E(g(x)) ≈
J∑

j=1

ωj√
π
g(
√
2σξj + µ)
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Gauss-Newton Method

We need to find coefficients νn to minimize e(ki , zi ; νn). One possible
algorithm is the Gauss-Newton method which uses an approximation to
the SSR norm. Consider the general formulation where we have outcomes,
yi , (LHS of Euler equation) and a function mapping points, xi , (our grid)
into outcomes (RHS of Euler equation). Thus,

min
γ

{
N∑
i=1

(yi − f (xi , γ))
2}.

γ =

 γ1
...
γp


We want to minimize the sum of squared residual ri = yi − f (xi , γ).
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Gauss-Newton Method II

Consider the simpler first order approximation around γs :

r(xi , γ) ≈ r(xi , γs) + [∇r(xi , γs)]
′(γ − γs)

min
γ

{
N∑
i=1

(ri − [∇r(xi , γs)]
′(γs − γ))2}.

Where ∇r(xi , γs) is the derivative of the residual with respect to γj , a
N X p matrix.
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Gauss-Newton Method III

Let γ = (γs − γ)

The problem has the solution:
γ = (∇r(xi , γs)

′∇r(xi , γs))
−1∇r(xi , γs)

′r(xi , γs).

It follows that the next guess is γs+1 = γs − γ.

The algorithm requires ∇r(xi , γs)

Sometimes (polynomials) known analytically, use it!

Otherwise, use numerical differentiation.
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Extensions

Several extensions exist which deal with:

Exploiting second derivatives (Hessian).

Non-smooth functions (simplex methods).

Constrained non-linear programming.
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A Simpler Approach

Alternatively, we can also iterate on γ until convergence:
1 Construct a grid X .

2 We will approximate u′(c(X )) but we could just as well approximate
c(X ).

3 Guess an initial γ0.

4 Compute the right-hand side, RHS , of the Euler equation given γ0.

5 The FOC requires that u′(ct) = RHS .

6 Given as norm SSR, the optimal γ satisfies (X ′X )−1X ′RHS .

7 Check for convergence and update γ0 = λγ0 + (1− λ)γ.
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Global vs. Local Solutions

0 5 10 15 20 25 30
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0

1

Minimizers are usually designed to find a local minimum.

So called genetic algorithms aim at finding the global minimum:

Find a local minimum, try other starting values and
recompute local minimum.

Pattern search, simulated annealing.
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PM with Multiple States

We need to approximate F (X ) : [−1, 1]L → R.

Polynomial function for L state variables (z , k in our case).

We can use the Tensor product of Chebyshev polynomials:

Pn(X ; νn) =
∑n

l1=0 ...
∑n

L=0 νl1,...,LTl1(x1) ∗ ∗ ∗ TL(xL)

If basis is orthogonal in a norm, tensor product is orthogonal in

the product norm.

Number of grid points growth exponentially in number of dimensions.

Smolyak’s algorithm: Number of grid points growth
polynomially in number of dimensions.
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Smolyak’s Algorithm

Sparse grid methods reduce computational burden.

Idea is to choose those grid points from the Tensor grid that are
important.

In practice, Smolyak’s algorithm has been found useful.

Judd et al. (2014) provide a comprehensive discussion.
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The Idea in two Dimensions

The algorithm relies on nested sets of points: Si ⊂ Si+1 ∀i .

The extrema of the Chebychev-polynomialal is one class of these sets.

Suppose we use i1 = i2 = 3 for our d = 2 dimensions. This yields a
5 X 5 tensor grid.

Smolyak’s rule is to select only those points from the sets for which
d ≤ i1 + i2 ≤ d + µ.

µ is an accuracy parameter.
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The Idea in two Dimensions

We need to interpolate our multidimensional function on this sparse grid.
See Judd et al. (2014) for a discussion.
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Algorithm for PM

1 Guess coefficients of Pn(X ; νn).

2 For each state, compute today’s decisions.

3 Using the budget constrained, compute the implied states tomorrow.

4 Use Pn(X ; νn) to compute tomorrow’s decisions (RHS of Euler eq.).

5 Compute implied today’s consumption decisions, ȳ = RHS−1/γ .

6 Compute implied coefficients by (X
′
X )−1X

′
ȳ .

7 Check convergence of coefficients and update.
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Algorithm for PM II

1 The previous algorithm is called fixed-point algorithm.

2 Uses current guess of Pn(X ; νn) to compute LHS and RHS of FOC.

3 Convenient because no solver needed. But convergence is tricky.

4 Alternatively, use time-iteration algorithm.

5 Use Pn(X ; νn) to compute tomorrow’s policies.

6 Solve for optimal policy today to solve FOCs (a non-linear problem),
ȳ = RHS−1/γ .

7 Compute implied coefficients by (X
′
X )−1ȳ .

8 Check convergence of coefficients and update.Wellschmied (UC3M) Basic Numerical Concepts 50 / 107



Methods not Relying on FOCs
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Projection Methods

Projection methods can also deal with borrowing constraints. Consider the
Aiyagary economy:

V (a, ϵ) = max
c,a′

{
U(c) + βEV (a′, ϵ′)

}
c + a′ = ϵ+ a(1 + r)

a′ ≥ a

πjk(ϵ
′ = ϵj |ϵ = ϵk)

With solution

cit =

{
β(1 + r)Etcit+1 if at+1 ≥ a

ϵ+ a(1 + r)− a otherwise.
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Algorithm

1 Guess coefficients of C (X ) = Pn(X ; νn).

2 For each state, compute today’s decisions.

3 If at+1 < a replace cit = ϵ+ a(1 + r)− a.

4 Use Pn(X ; νn) to compute tomorrow’s decisions (RHS of Euler eq.).

5 Compute implied today’s consumption decisions, ȳ = RHS−1/γ .

6 If at+1 < a replace cit = ϵ+ a(1 + r)− a.

7 Compute implied coefficients by (X
′
X )−1ȳ .

8 Check convergence of coefficients and update.
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Off-Grid Choices

1 Define a grid, gn, for your dynamic state with N points.

2 Define a second grid, gm, for possible choices with M > N points.

3 Some points of gm are not part of gn. Interpolation needed:

If we know V (x1) and V (x2), what is V (x0) with x1 < x0 < x2.

Usually we use splines for this.

4 Super quick: interpolation base points and interpolation weights stay
constant.
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Spline Approximation I

Before considering the specific issue of interpolation, consider general idea
of splines. Think of spline approximation as again replacing an unknown
function f (x) by a know function g(x).

Polynomials assume g(x) ≈ f (x) ∀x ∈ [x , x ].

Splines fit polynomials for different regions of [x , x ]: [x1, x2],[x2, x3],...

By using N − 1 splines, we assure f (xi ) = g(xi ).
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Spline Approximation II

This local approach assures that a change in x >> xi does little to
f (xi ).
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Different Splines

Simplest is a polynomial of order one which is called piecewise linear spline.
For x ∈ [xi , xi+1]:

f (x) = f (xi ) + (x − xi )
f (xi+1)− f (xi )

xi+1 − xi
.
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Different Splines II

The function is non-differentiable at the nodes. To avoid this, use cubic
splines:

f (x) = ai + bix + cix
2 + dix

3.

With n-segments, 4n unknowns.

f (xi ) = g(x) ∀xi .

assure differentiability.

assure 2nd derivative.

2 free parameters left.
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assure differentiability.

assure 2nd derivative.

2 free parameters left.
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Interpolation

Spline approximation gives us function defined on R. Interpolation
requires only specific points.

One dimension:

I know V (x1) and V (x2).

I want to know V (x0) where x1 < x0 < x2.

Use a function V (x0) ≈ f (x1, x2, x0,V (x1),V (x2))

V (x) needs to be continuous and monotone between grid points.

Idea easily extended to n-dimensions:

Denote by X n
0 = [x10 , ..., x

n
0 ].

V (X n
0 ) ≈ f (X n

1 ,X
n
2 ,X

n
0 ,V (X n

1 ),V (X n
2 ))
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Linear Interpolation

Simplest function is linear interpolation:

One dimension: V (x0) = V (x1) +
V (x2)−V (x1)

x2−x1
(x0 − x1)

The resulting linear spline approximation is not differentiable.

Linear interpolation, by far the fastest!
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Bilinear Interpolation

Define d = 1
(x2−x1)(y2−y1)

V (x0, y0) = d [V (x1, y1)(x2 − x0)(y2 − y0) + V (x2, y1)(x0 − x1)(y2 − y0)

+ V (x1, y2)(x2 − x0)(y0 − y1) + V (x2, y2)(x0 − x1)(y0 − y1)]
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Spline Interpolation

When function is non-linear, more accurate functions available.

As seen, cubic splines (Cubic Hermite Splines) assure first two
derivatives at V (x1) and V (x2).

In theory, can be extended to higher order derivatives.
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Tsao and Tsitsiklis (1991) Multigrid

1 Solve the model on a curse grid, yielding V 0.

2 Increase number of grid points in each dimension by factor 2.

3 Obtain initial guess of value function by interpolating using V 0.

4 Decrease critical value by factor of 2.

5 Perform value function iteration to obtain V 1.

6 Repeat until desired grid size.
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Golden Section Search

Consider again a simple household problem:

V (a, z) = max
c,a′

{
U(c) + βEV (a′, z ′)

}
c + a′ = z + a(1 + r)

x ≤ a′ ≤ x .

We know W (a, a′, z) = U(a′) + βEzV (a′, z ′) is concave.

Find the maximum over a concave function in interval [x ′, x ′].
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Golden Section Search

We know a′∗ is between [A,D].

Assume we evaluate W (a,B) and W (a,C )

W (a,B) > W (a,C ) so a′∗ ∈ [A,C ].

Otherwise, a′∗ ∈ [B,D].

Only one new function evaluation.
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Golden Section Search II

How to choose B,C?

Find the maximum with minimum function evaluations.

Choose intervals to have same length: AC = BD.

Assure that: p := AC
AD

= A1C1

A1D1
.

p =
√
5−1
2 ≈ 0.618.
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Golden Section Search Algorithm

1 Set A = x , D = x . Compute:

B = pA+ (1− p)D, C = (1− p)A+ pD.

2 If W (a,B) > W (a,C ), replace D by C and C by B. Compute:

B = pA+ (1− p)D.

3 Iterate until |A− D| < crit.

B,C may be off grid points. Interpolation needed!
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Endogenous Grid Points (EGM)

Consider the Aiyagari economy, where households face an exogenous
borrowing constraint

V (a, ϵ) = max
c,a′

{
U(c) + βEV (a′, ϵ′)

}
c + a′ = ϵ+ a(1 + r)

a′ ≥ a

πjk(ϵ
′ = ϵj |ϵ = ϵk)
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Endogenous Grid Points II

The first order condition implies

U ′(c(at , ϵt)) = (1 + r)β
N∑
j=1

π(ϵt+1|ϵt)U ′(c(at+1, ϵt+1))

U ′(c(at , ϵt))− (1 + r)β
N∑
j=1

π(ϵt+1|ϵt)U ′(c(at + ϵt − c(at , ϵt), ϵt+1)) = 0

This is (again) a root finding problem in optimal policy c(a, ϵ).

Carroll (2006) insight: If we knew c(at+1, ϵt+1), simply a linear
equation.

E.g., c =
(
(1 + r)β

∑N
j=1 π(ϵt+1|ϵt)c(at+1, ϵt+1)

−γ
)−1/γ

.
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Endogenous Grid Points Algorithm

1 Construct a grid of assets today, a ∈ A, and tomorrow a ∈ A with
a1 = a.

2 Guess the policy function c(a, ϵ).

3 Solve B(a, ϵ) = (1 + r)β
∑N

j=1 π(ϵ
′|ϵ)U ′(c(a, ϵ′)).

4 Solve for implied consumption today c(ã, ϵ) = B(a, ϵ)−1/γ .

5 From budget constraint: ã = c+a−ϵ
1+r .

6 For a ≤ ã(1): c = ϵ+ a(1 + r)− a.

7 Interpolate c(a, ϵ) on c(ã, ϵ).

8 Replace initial guess and iterate until convergence.
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6 For a ≤ ã(1): c = ϵ+ a(1 + r)− a.

7 Interpolate c(a, ϵ) on c(ã, ϵ).
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Endogenous Grid Points Value Function

Sometimes, we are not only interested in the policy, but also the value
function.

We can use the insight of EGM, to iterate on the value function.

∂V (a, ϵ)

∂a′
=

∂U(c)

∂c

∂c

∂a′
+ β

∂EV (a′, ϵ′)

∂a′
= 0

U ′(c) = β
∂EV (a′, ϵ′)

∂a′
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Endogenous Grid Points Value Function II

1 Construct a grid of assets today, a ∈ A, and tomorrow a ∈ A.

2 Guess the expected value function tomorrow
V̂ (a, ϵ) = β

∑N
j=1 π(ϵ

′|ϵ)V (a, ϵ′).

3 Solve B(a, ϵ) = V̂ (a,ϵ′)
∂a .

4 Solve for implied consumption today c(ã, ϵ) = B(a, ϵ)−1/γ .

5 From budget constraint: ã = c+a−ϵ
1+r .

6 For a ≤ ã(1): c = ϵ+ a(1 + r)− a.

7 Interpolate c(a, ϵ) on c(ã, ϵ).

8 From budget constraint: a′(a, ϵ) = (1 + r)a− c(a, ϵ) + ϵ.

9 Obtain V̂ (a′, ϵ) by interpolating on V̂ (a, ϵ).

10 Update value function: V (a, ϵ) = U(c) + V̂ (a′, ϵ).
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Endogenous Grid Points, Two Choices

Barillas and Fernandez-Villaverde (2007) study problem similar to:

V (a, z) = max
c,a′,l

{(
cθ(1− l)1−θ

)1−τ

1− τ
+ βEV (a′, z ′)

}
z ′ = ρz + ϵ′

a′ + c = (1 + r)a+ l exp(z)

a′ ≥ 0
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Endogenous Grid Points, Two Choices II

First order condition for asset next period:

θ

(
cθ(1− l)1−θ

)1−τ

c
= β

∂E{V (a′, z ′)}
∂a′

:= V̂

This can be solved for consumption today:

ct =
[ V̂

θ(1− lt)(1−θ)(1−τ)

] 1
θ(1−τ)−1

Thus, as before, knowing V̂ (and lt) yields a solution for consumption
today.
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Endogenous Grid Points, Two Choices III

First order condition for labor implies:

1− θ

θ

ct
1− lt

= zt

Knowing consumption, we can solve for labor.
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Endogenous Grid Points, Two Choices Algorithm

1 Guess optimal policy for labor: ϕl(a, z).

2 Solve the EGM algorithm for ϕc(a, z).

3 Solve for ϕl(a, z) and update policy.

4 Iterate until convergence.
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Vectorizing Your Code

Consider again a simple household problem:

V (a, ϵ) = max
c,a′

{
U(c) + βEV (a′, ϵ′)

}
c + a′ = ϵ+ a(1 + r)

a′ ≥ a

πjk(ϵ
′ = ϵj |ϵ = ϵk)

Take an asset grid of 5000 points and a productivity grid of 3 points the
problem takes:

147 seconds to solve on an i7− 10700 2.9 GH processor when written
with loops.

, for reasons explained below, 25 seconds when fully vectorized.
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Parallelizing Your Code

Many loop operations can be done simultaneously, instead of
sequentially:

Solve value function at each grid point.

Simulate a Markov process.

There are two broad types of parallizations:

Computer has several cores (local).

Server has several computers (cluster).
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Matlab Parallelizing

Using several cores:
parpool(’local’,6)
parfor i = 1 : 10
f (i) = VFI (i);
end
poolobj = gcp(’nocreate’);
delete(poolobj);

Using a cluster:
parpool(’Name’,22, ’AttachedFiles’,
{’VFI.m’ ’FOC.m’})
parfor i = 1 : 10
f (i) = VFI (i);
end
poolobj = gcp(’nocreate’);
delete(poolobj);
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Efficiency of Parallelizing

The speed gain is significantly below 1/N:

It can be even considerably slower than non-paralization.

As memory needs to be passed to each worker at the same time, you
may run into memory issues.

Parallization creates overhead communication between Matlab and
the different cores.

Often, the efficiency loss is smallest when every single computation
takes time.

Because how things are organized on the RAM, it can matter over
which dimension you loop.

My computer has 8 cores. Using 6, computation time drops from 147
seconds to 69 seconds.
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Going beyond Matlab
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Interpreted Languages

Matlab is what is called an interpreted language:

What does B = sum(A) mean in Matlab?

Reads the expression.

Checks what A is (one or more dimensions?)

Check, what sum() does for this type of argument.

Check if B exists or if it needs to be created.

This is why loops are slow in Matlab.
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Compiled Languages

This is different from compiled languages. Two famous exaples are
Fortran and C++:

What does B = sum(A) mean in Fortran?

At execution time, the compiler has translated this statement into
machine code.

It has determined what A is.

It has made sure, A is a data type that sum() can be applied to.

It has made sure that B has been declared and can contain the
result of sum(A).

The computer than just executes instruction by instruction.

Wellschmied (UC3M) Basic Numerical Concepts 83 / 107



Compiled Code in Matlab

Some Matlab functions are compiled code.

Matlab provides possibility to include your own compiled code as
.mex functions.

Either C++ or Fortran.

Unfortunately the documentation is poor.

This provides the opportunity to outsource computational expensive
routines.

While keeping the advantages of Matlab.

Debugging is tedious.
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Compiled Code in Matlab II

Here, I show you how to use Windows Visual Studio together with an
Intel compiler.

There are also free of charge compilers (Windows Visual Studio
Community is free of charge).

Linux systems (Ubuntu) have compilers already installed

Our cluster runs on Ubuntu!
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Visual Studio I
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Visual Studio II
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Visual Studio III
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Visual Studio IV
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Visual Studio V
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Visual Studio VI
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Visual Studio VII
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Visual Studio IIX
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Visual Studio IX
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Visual Studio X
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Mex-file Computation Time

Solving the household problem with a mex-file takes 27 seconds.

Much faster than the 147 seconds in Matlab.

It is still slower than the 25 seconds from the fully vectorized version
in Matlab. The reason is communication cost.

However, full vectorization is often not feasible:

Monte Carlo simulations.
Large state spaces imply huge matrices stretching the RAM. A
10000X10000 matrix is already 3.9 GB with double precision and 2.6
with single precision.

Non-paralized code is easier to read.

Non-paralized code can save on non-necessary computations.
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Saving on Non-Necessary Computations

In our problem, most computations are not necessary.

We know the policy function is monotone and the return function is
concave.

In Matlab a non-paralized smart code takes 0.16 seconds.

a mex-file takes 0.04 seconds.

These speed gains are extreme due to the regularity of the problem
but you often know (or suspect) something about your problem.

Wellschmied (UC3M) Basic Numerical Concepts 97 / 107



From the CPU to the GPU

So far, we ask our computer to solve the problem on the computer
processing unit (CPU).

CPU’s are designed to solve complex problems.

It turns our, simpler problems can be more efficiently handled by the
graphical processing unit (GPU).

A GPU has a large amount of cores but only limited memory.

I have a NVIDIA GeForce RTX 3060. This GPU has 3584 cores with
12GB RAM.

Hence, the GPU is only useful for tasks that can be paralized.
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From the CPU to the GPU

CUDA allows you to write your own programs based on C++ as .cu
files.

You can embed these in Matlab as .mex files (Matlab: mexcuda) or
.ptx files (Visual Studio).

This, however, requires some advanced programing knowledge.

The VFI-toolkit does it for you for a particular class of problems.

With my NVIDIA GeForce RTX 3060, the earlier problem takes 3
seconds (down from 147 with the CPU).
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More on GPU Code

Only 1024 threads can access what is called “shared memory” posing
a limit to evaluate max(abs(Vnew − Vold)). Hence,
max(abs(Vnew − Vold)) needs to be evaluated on the Host. When
Matlab is the host, this produces overhead.

It must be possible to paralize the function. This implies, you cannot
exploit the monotonicity of the policy function.

In the present case, we can still exploit concavity of the value function.
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Summary of Speed

147 seconds with for loops in Matlab.

69 seconds with parfor loop and 6 workers in Matlab.

25 seconds with vectorization in Matlab.

27 seconds with Fortan mex-file.

3 seconds with the VFI-toolkit (GPU).

0.37 seconds with smart code on the GPU.

0.16 seconds with smart code in Matlab.

0.04 seconds with smart code and a Fortan mex-file.
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More on GPU Programming and Overhead

When working with the GPU, passing information between the
“Host” and the “Device” creates overhead costs. Also Matlab creates
overhead costs.

Hence, you want to write the CUDA code as “complete” as possible.

To understand the role of overhead, the next slide shows speeds when
I decrease the asset grid size to 330 (but decrease the convergence
criteria). I.e., every function evaluation is more simple but we do
more.
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Summary of Speed with fewer Grid Points

9.65 seconds with for loops in Matlab.

9.82 seconds with parfor loop and 6 workers in Matlab.

2.14 seconds with vectorization in Matlab.

1.82 seconds with Fortan mex-file.

2.01 seconds with the VFI-toolkit (GPU).

0.17 seconds with smart code in Matlab.

0.03 seconds with smart code and a Fortan mex-file.

0.001 seconds with smart code and “complete” code on the GPU.

There is a trade-off between paralization and overhead!
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Accuracy of Numerical
Approximation
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Accuracy of Numerical Approximation

We would like to assess the accuracy of numerial solutions. One possibility
are normalized Euler equation errors:

EE =
u′(ct)− βERt+1u

′(ct+1)

u′(ct)

In the Neo-classical growth model:

EE (kt , zt) = 1− (βE(αZt+1ϕ(kt , zt)
α−1 + 1− δ)u′(ct+1))

−1/γ

ct

The error is defined at each grid point ki , zj .

It has a natural interpretation:

If EEi ,j = 0.01, the agent makes a 1$ mistake for every 100$ spend.
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Dynamic Euler Equation Error

Euler equation error are a one period ahead error.

But (small) errors may accumulate over time.

Simulate two time series with T periods:

1 Simulate the series using policy function for consumption.

2 Simulate an alternative series:

Compute rhs of Euler equation using numerical integration (g).

Solve for ct = g−1/γ .

Solve for kt+1 = ztk
α
t + (1− δ)kt − ct .

3 Compare the two series.

Wellschmied (UC3M) Basic Numerical Concepts 106 / 107



References

Barillas, F. and J. Fernandez-Villaverde (2007): “A Generalization of the Endogenous
Grid Method,” Journal of Economic Dynamics and Control, 31, 2698–2712.

Carroll, C. D. (2006): “The Method of Endogenous Gridpoints for Solving Dynamic
Stochastic Optimization Problems,” Economics Letters, 91, 312–320.

Judd, K., L. Maliar, S. Maliar, and R. Valero (2014): “Smolyak Method for Solving
Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive
Domain,” Journal of Economic Dynamics and Control, 44, 92–123.

Tsao, C.-S. and J. Tsitsiklis (1991): “An Optimal One-Way Multigrid Algorithm for
Discrete Time Stochastic Control,” IEEE Transaction on Automatic Control, 36, 898–914.

Wellschmied (UC3M) Basic Numerical Concepts 107 / 107


	Motivation
	

	Two Controls
	

	Alternatives to "Standard" VFI
	

	References

