Basic Numerical Concepts

Felix Wellschmied

UC3M
Macroeconomics III

Motivation

Who Needs Numerical Methods

- Macro economists.
- Micro economists: Dynamic games and dynamic contracts.
- Applied economists: Estimate (non-)parametric models.
- Econometricians: Bootstrapping and simulations.

A Simple Growth Model

$$
\begin{aligned}
V(k, z) & =\max _{c, k^{\prime}}\left\{\ln (c)+\beta \mathbb{E} V\left(k^{\prime}, z^{\prime}\right)\right\} \\
c & =y-i \\
k^{\prime} & =(1-\delta) k+i, \quad 0 \leq \delta \leq 1 \\
y & =z k^{\alpha} \\
z^{\prime} & =P(z)
\end{aligned}
$$

Goal: Find the policy function (and value function) $k_{t+1}=\phi\left(k_{t}, z_{t}\right)$.
The " most basic" macro model, yet analytical solution only with $\delta=1$.

Algorithm Solving the Model

(1) Discretize a grid for the state k and z.
(2) Guess the (continuous and concave) value function $V^{0}(k, z)$.
(3) Solve $V^{n}(k, z)=\max _{c, k^{\prime}}\left\{\ln (c)+\beta \mathbb{E} V^{n-1}\left(k^{\prime}, z^{\prime}\right)\right\}$.
(4) Replace last iteration guess by new solution $V^{n-1}=V^{n}$.
(9) Iterate until $\left|V^{n}-V^{n-1}\right|<c r i t$.

Limits to VFI

This is great, but many problems are more complex.

- Household has assets, a_{t}, and housing, h_{t}, and decides a_{t+1}, h_{t+1}.
- It earns its productivity $\exp \left(z_{t}\right)$.
- Log productivity follows a Markov chain: $P_{j k}\left(z_{t+1}=z^{j} \mid z_{t}=z^{k}\right)$.
- $c_{t}+a_{t+1}+h_{t+1}=a_{t}+h_{t}+\exp \left(z_{t}\right)$.

Limits to VFI II

$$
V(a, h, z)=\max _{c, a^{\prime}, h^{\prime}}\left\{U(c, h)+\beta \mathbb{E} V\left(a^{\prime}, h^{\prime}, z^{\prime}\right)\right\}
$$

- Two endogenous dynamic state variables a_{t} and h_{t}.
- One exogenous state variable z_{t}.
- Assume I discretize $N_{a}=1000, N_{h}=1000, N_{z}=5$, these are $5,000,000$ state combinations with $1,000,000$ choices.
- 5,000,000,000,000 computations of $U(c, h)+\beta V\left(a^{\prime}, h^{\prime}, z^{\prime}\right)$ and finding $5,000,000$ times the maximum for one update of V !

Two Controls

Concepts

- Consider a problem with one state variable (size N1) and two controls (sizes $N 1$ and $N 2$).
- We could construct two grids, one for each control.
- For each iteration of the value function we need to solve $\forall N 1$, $N 1 X N 2$ possible choices.
- Sometimes, first-order conditions suggest something simpler.

Two Controls

Neo-classical growth model with labor I:

$$
\begin{aligned}
& V(k, z)=\max _{c, k^{\prime}, l}\left\{\frac{\left(c^{\theta}(1-l)^{1-\theta}\right)^{1-\tau}}{1-\tau}+\beta \mathbb{E} V\left(k^{\prime}, z^{\prime}\right)\right\} \\
& c+k^{\prime}=z k^{\alpha} I^{1-\alpha}+(1-\delta) k \\
& \ln \left(z^{\prime}\right)=\rho \ln (z)+\epsilon^{\prime}
\end{aligned}
$$

Find $\phi_{c}(k, z), \phi_{l}(k, z)$. The first order conditions imply:

$$
\frac{c}{1-l}=\frac{\theta}{1-\theta}(1-\alpha) z k^{\alpha} I^{-\alpha}
$$

Two Controls

Neo-classical growth model with labor I:

$$
\begin{aligned}
& V(k, z)=\max _{c, k^{\prime}, l}\left\{\frac{\left(c^{\theta}(1-l)^{1-\theta}\right)^{1-\tau}}{1-\tau}+\beta \mathbb{E} V\left(k^{\prime}, z^{\prime}\right)\right\} \\
& c+k^{\prime}=z k^{\alpha} I^{1-\alpha}+(1-\delta) k \\
& \ln \left(z^{\prime}\right)=\rho \ln (z)+\epsilon^{\prime}
\end{aligned}
$$

Find $\phi_{c}(k, z), \phi_{l}(k, z)$. The first order conditions imply:

$$
\frac{c}{1-l}=\frac{\theta}{1-\theta}(1-\alpha) z k^{\alpha} I^{-\alpha}
$$

Knowing optimal policy $\phi_{c}(k, z)$, this is a non-linear root finding problem in l.

Two Controls II

- One way to solve the problem is:

1. Guess optimal policy for labor, $\phi_{l}(k, z)$.
2. Solve for optimal policy for consumption $c=\phi_{c}(k, z)$.
3. Solve FOC for optimal $\phi_{I}(k, z)$.
4. Iterate until convergence.

- For step (3) we need a root-finding algorithm.

Newton-Raphson Method for Root Finding

- Newton method uses first order approximation to function.
- First order approximation around guess x_{0} :

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- Setting $f(x)=0$ and solving for x gives new guess:

$$
x^{\prime}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

The tangent intersects the x-axis.

- This requires numerical differentiation (in one second)!

Modified Newton-Raphson Method

- When the objective function is close to flat around x^{0}, the linear approximation may lead to a poor prediction.
- Function may not be defined at x^{\prime}.

Reformulating the problem is often possible.

- The Modified Newton-Raphson Method updates slowly $\lambda \in[0,1]$:

$$
x^{\prime}=x_{0}-\lambda \frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)} .
$$

Multivariate case

The method can be extended straightforward to the multivariate case:

$$
\mathbf{f}(\mathbf{x})=\mathbf{0} \Leftrightarrow\left\{\begin{array}{l}
0=f^{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \\
0=f^{n}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right.
$$

Define the Jacobian:

$$
\mathbf{J}(\mathbf{a})=\left[\begin{array}{ccccc}
f_{1}^{1} & f_{2}^{1} & f_{3}^{1} & \ldots & f_{n}^{1} \\
f_{1}^{2} & f_{2}^{2} & f_{3}^{2} & \ldots & f_{n}^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f_{1}^{n} & f_{2}^{n} & f_{3}^{n} & \ldots & f_{n}^{n}
\end{array}\right], \quad f_{j}^{i}=\frac{\partial f^{i}(\mathbf{x})}{\partial x_{j}}
$$

Multivariate case II

If $\mathbf{J}(\mathbf{x})$ is Libschitz (sufficient: continuous differentiable), then approximate

$$
\mathbf{f}(\mathbf{x}) \approx \mathbf{f}\left(\mathbf{x}_{0}\right)+\mathbf{J}\left(\mathbf{x}_{\mathbf{0}}\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)
$$

with solution

$$
\mathbf{x}^{\prime}=\mathbf{x}_{0}-\lambda \mathbf{J}\left(\mathbf{x}_{0}\right)^{-1} \mathbf{f}\left(\mathbf{x}_{0}\right)
$$

Numerical Differentiation

For this algorithm, we need to compute

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$

- Simplest method called one sided approximation:

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h} \text {. Slope error proportional to } h
$$

Numerical Differentiation II

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Two sided approximation:
$f^{\prime}(x) \approx \frac{f(x+h)-f(x-h)}{2 h}$. Slope error proportional to h^{2}.

Numerical Differentiation III

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Five point method:

$$
f^{\prime}(x) \approx \frac{-f(x+2 h)+8 f(x+h)-8 f(x-h)+f(x-2 h)}{12 h}
$$

Slope error proportional to h^{4}.

Alternatives to "Standard" VFI

Methods Relying on FOCs

Projection Method

Consider the Neo-classical growth model without labor:

$$
\begin{aligned}
c_{t}^{-\gamma} & =\mathbb{E}\left\{\beta c_{t+1}^{-\gamma}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+(1-\delta)\right)\right\} \\
c_{t}+k_{t+1} & =z_{t} k_{t}^{\alpha}+(1-\delta) k_{t} \\
\ln \left(z_{t+1}\right) & =\rho \ln \left(z_{t}\right)+\epsilon_{t+1} \\
\epsilon_{t+1} & \sim N\left(0, \sigma^{2}\right)
\end{aligned}
$$

Rational expectation solution:

$$
\begin{aligned}
c_{t} & =\mathbf{c}\left(k_{t}, z_{t}\right) \\
k_{t+1} & =\mathbf{k}\left(k_{t}, z_{t}\right)
\end{aligned}
$$

Reformulating the Problem

$$
\mathbf{c}\left(k_{t}, z_{t}\right)^{-\gamma}=\mathbb{E}\left\{\beta \mathbf{c}\left(k_{t+1}, z_{t+1}\right)^{-\gamma}\left(\alpha z_{t+1} k_{t+1}^{\alpha-1}+(1-\delta)\right)\right\}
$$

Substitute in the budget constraint:

$$
\begin{aligned}
\mathbf{c}\left(k_{t}, z_{t}\right)^{-\gamma}-\mathbb{E}\{ & \left\{\mathbf{c}\left(z_{t} k_{t}^{\alpha}+(1-\delta) k_{t}-\mathbf{c}\left(k_{t}, z_{t}\right), z_{t+1}\right)^{-\gamma}\right. \\
& \left.\left(\alpha z_{t+1}\left(z_{t} k_{t}^{\alpha}+(1-\delta) k_{t}-\mathbf{c}\left(k_{t}, z_{t}\right)\right)^{\alpha-1}+(1-\delta)\right)\right\}=0
\end{aligned}
$$

Which is at each grid point k_{i}, z_{i} a root-finding problem in optimal consumption.

Idea of Projection Methods

Idea, approximate policy function by a known function:

$$
\mathbf{c}\left(k_{t}, z_{t}\right) \approx P_{n}\left(k_{t}, z_{t} ; \nu_{n}\right)
$$

Idea of Projection Methods

Idea, approximate policy function by a known function:

$$
\mathbf{c}\left(k_{t}, z_{t}\right) \approx P_{n}\left(k_{t}, z_{t} ; \nu_{n}\right)
$$

- Usually, P_{n} of polynomial class.
- Euler equation needs to hold at each grid point i.

Projection Method II

Substituting $\mathbf{c}\left(k_{i}, z_{i}\right) \approx P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)$:

$$
e\left(k_{i}, z_{i} ; \nu_{n}\right)=P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)^{-\gamma}-\mathbb{E}\left\{\beta P_{n}\left(k^{\prime}, z^{\prime} ; \nu_{n}\right)^{-\gamma}\left(\alpha z^{\prime} k^{\prime \alpha-1}+(1-\delta)\right)\right\}
$$

Inserting budget constraint and law of motion:

$$
\begin{aligned}
& e\left(k_{i}, z_{i} ; \nu_{n}\right)=P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)^{-\gamma}- \\
& \quad \mathbb{E}\left\{\beta P_{n}\left(z_{i} k_{i}^{\alpha}+(1-\delta) k_{i}-P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right), \exp \left(\rho \ln \left(z_{i}\right)+\epsilon^{\prime}\right) ; \nu_{n}\right)^{-\gamma}\right. \\
& \left.\quad\left[\alpha \exp \left(\rho \ln \left(z_{i}\right)+\epsilon^{\prime}\right)\left(z_{i} k_{i}^{\alpha}+(1-\delta) k_{i}-P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)\right)^{\alpha-1}+(1-\delta)\right]\right\}
\end{aligned}
$$

Projection Method III

Approximating integral by J Hermite Gaussian quadrature nodes:

$$
\begin{aligned}
& \quad e\left(k_{i}, z_{i} ; \nu_{n}\right)=P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)^{-\gamma}- \\
& \sum_{j=1}^{J}\left[\beta \frac{\omega_{j}}{\sqrt{\pi}} P_{n}\left(z_{i} k_{i}^{\alpha}+(1-\delta) k_{i}-P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right), \exp \left(\rho \ln \left(z_{i}\right)+\sqrt{2} \sigma \xi_{j}\right) ; \nu_{n}\right)^{-\gamma}\right. \\
& \left.\left[\alpha \exp \left(\rho \ln \left(z_{i}\right)+\sqrt{2} \sigma \xi_{j}\right)\left(z_{i} k_{i}^{\alpha}+(1-\delta) k_{i}-P_{n}\left(k_{i}, z_{i} ; \nu_{n}\right)\right)^{\alpha-1}+(1-\delta)\right]\right]
\end{aligned}
$$

This can be solved for ν_{n} at each grid point to minimize $e\left(k_{i}, z_{i} ; \nu_{n}\right)$.

Projection Method IV

- We have to fix k_{i}, z_{i}.

Chebyshev nodes have good convergence properties.

- We have to find the parameters ν_{n}.

Collacation ($M=N$): Use a function solver to solve for $e\left(k_{i}, z_{i} ; \nu_{n}\right)=0$ at all grid points.

Galerkin $(M>N)$, minimize $e\left(k_{i}, z_{i} ; \nu_{n}\right)$.
For example, Gauss-Newton algorithm.

- The latter requires to evaluate $\left(\bar{X}^{\prime} \bar{X}\right)^{-1}$.

Chebyshev polynomial avoids multicollinearity.

Function approximation

Assume you want to approximate $g(x)$ by a known function $f(x)$:

$$
g(x) \approx f(x)
$$

In our case: $\mathbf{c}(k, z) \approx P_{n}\left(k, z ; \nu_{n}\right)$.

Function approximation

Assume you want to approximate $g(x)$ by a known function $f(x)$:

$$
g(x) \approx f(x)
$$

$$
\text { In our case: } \mathbf{c}(k, z) \approx P_{n}\left(k, z ; \nu_{n}\right)
$$

- (One-dimensional) Polynomials:

$$
f(x)=\nu_{0} T_{0}(x)+\nu_{1} T_{1}(x)+\nu_{2} T_{2}(x) \ldots+\nu_{n} T_{n}(x)
$$

Weierstrass Theorem: A continuous, real valued function on a bounded interval can be approximated arbitrary well by a polynomial.

- Splines are an alternative:

Piecewise polynomial functions.

Increasing Polynomial Order

Chebychev Polynomial

One important type has the basis function:

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x \\
& T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \\
& g(x) \approx \sum_{j=1}^{n} \nu_{j} T_{j}(x)
\end{aligned}
$$

- Defined on the interval $[-1,1]$, but we can always transform a continuous function.

If space $S=[a, b]$ map into $[-1,1]$ by $2 \frac{s-a}{b-a}-1$.

Why Use Chebychev Polynomial?

- Chebychev polynomials help avoid multicollinearity

$$
\int_{a}^{b} T_{i}(x) T_{j}(x) w(x) d x=0
$$

- This is helpful when evaluating $\left(\bar{X}^{\prime} \bar{X}\right)^{-1}$.

Chebyshev Nodes

In projection methods, we usually create the grid using Chebychev nodes. n Chebychev nodes are the roots to the $n^{\text {th }}$ Chebyshev basis function:

$$
T_{n}(x)=0
$$

For example, to create $n=3$ Chebychev nodes:

$$
\begin{aligned}
& T_{3}(x)=4 x^{3}-3 x=0 \\
& x=\left[\begin{array}{lll}
-\sqrt{3 / 4} & 0 & \sqrt{3 / 4}
\end{array}\right]
\end{aligned}
$$

Why Use Chebyshev Nodes?

Chebyshev nodes can also be useful outside projection methods. In structural modeling, we are often free to choose nodes at which to approximate:

$$
V(a) \approx f(a) \forall a \in \mathcal{A}
$$

\mathcal{A} could be a linear grid of length n in $[\underline{a}, \bar{a}]$. It can also be the $n^{\text {th }}$ Chebyshev nodes in $[\underline{a}, \bar{a}]$.

Chebychev nodes have desirable convergence properties given an initial coefficient guess ν_{n}^{0} !

Numerical Integration

We need to know $\mathbb{E} \mathbf{c}\left(k_{t+1}, \rho \ln \left(z_{i}\right)+\epsilon^{\prime}\right)^{-\gamma}$, where $\epsilon^{\prime} \sim N\left(\mu, \sigma^{2}\right)$. Generally, in economics, we often need to calculate:

$$
\int_{a}^{b} f(x) d x
$$

- An integral is an infinite object.
- We need to calculate a finite approximation.

Numerical Integration II

Numerical integration replaces the integral by a finite sum:

$$
\int_{a}^{b} f(x) d x \approx \sum_{j=1}^{J} \omega_{j} f\left(\xi_{j}\right)
$$

- ξ_{j} is the node j at which we evaluate the function.
- ω_{j} is the weight for node j.
- This gives 2 J free parameters.

Gauss-Legendre

Let us start with the following problem:

$$
\int_{-1}^{1} f(x) \approx \sum_{j=1}^{J} \omega_{j} f\left(\xi_{j}\right)
$$

Idea: Choose ξ_{j}, ω_{j} such that approximation is accurate for functions
that can be approximate by polynomials of degree $2 J-1$.

$$
\int_{-1}^{1} x^{i} d x=\sum_{j=1}^{J} \omega_{j} \xi_{j}^{i}, \quad i=0,1, \ldots 2 J-1
$$

- Yields $2 J$ equations in $2 J$ unknowns.
- Note, the choices of ξ and ω do not depend on f ! Only the evaluations $f\left(\xi_{j}\right)$ do.

Gauss-Hermite

Now assume a function $g(x)$ can be approximated by polynomial, and we can write

$$
f(x)=g(x) W(x)
$$

Gauss-Hermite uses $W(x)=e^{-x^{2}}$ and domain is the real line:

$$
\int_{-\infty}^{\infty} x^{i} e^{-x^{2}} d x=\sum_{j=1}^{J} \omega_{j} \xi_{j}^{i}, \quad i=0,1, \ldots 2 J-1
$$

So we approximate:

$$
\int_{-\infty}^{\infty} g(x) e^{-x^{2}} d x \approx \sum_{j=1}^{J} \omega_{j} g\left(\xi_{j}\right)
$$

Expectations of a Normally Distributed Variable

We want to compute $\mathbb{E}(g(x))$, where $x \sim N\left(\mu, \sigma^{2}\right)$:

$$
\mathbb{E}(g(x))=\int_{-\infty}^{\infty} \frac{g(x)}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x
$$

Define auxiliary variable $y=\frac{(x-\mu)}{\sqrt{2} \sigma}$, with $x=h(y)=\sqrt{2} \sigma y+\mu$. Now use
integration by substitution:

$$
\int_{a}^{b} g(x) d x=\int_{h^{-1}(a)}^{h^{-1}(b)} g(h(y)) h^{\prime}(y) d y \text { with } x=h(y) .
$$

Expectations of a Normally Distributed Variable II

$$
\begin{aligned}
\mathbb{E}(g(x)) & =\int_{-\infty}^{\infty} \frac{g(x)}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) d x \\
& =\int_{-\infty}^{\infty} \frac{g(\sqrt{2} \sigma y+\mu)}{\sigma \sqrt{2 \pi}} \exp \left(-y^{2}\right) \sigma \sqrt{2} d y \\
& =\int_{-\infty}^{\infty} \frac{g(\sqrt{2} \sigma y+\mu)}{\sqrt{\pi}} \exp \left(-y^{2}\right) d y
\end{aligned}
$$

So, we have:

$$
\mathbb{E}(g(x)) \approx \sum_{j=1}^{J} \frac{\omega_{j}}{\sqrt{\pi}} g\left(\sqrt{2} \sigma \xi_{j}+\mu\right)
$$

Gauss-Newton Method

We need to find coefficients ν_{n} to minimize $e\left(k_{i}, z_{i} ; \nu_{n}\right)$. One possible algorithm is the Gauss-Newton method which uses an approximation to the SSR norm. Consider the general formulation where we have outcomes, y_{i}, (LHS of Euler equation) and a function mapping points, x_{i}, (our grid) into outcomes (RHS of Euler equation). Thus,

$$
\min _{\gamma}\left\{\sum_{i=1}^{N}\left(y_{i}-f\left(x_{i}, \gamma\right)\right)^{2}\right\}
$$

$$
\gamma=\left[\begin{array}{l}
\gamma_{1} \\
\cdots \\
\gamma_{p}
\end{array}\right]
$$

We want to minimize the sum of squared residual $r_{i}=y_{i}-f\left(x_{i}, \gamma\right)$.

Gauss-Newton Method II

Consider the simpler first order approximation around γ_{s} :

$$
\begin{aligned}
& r\left(x_{i}, \gamma\right) \approx r\left(x_{i}, \gamma_{s}\right)+\left[\nabla r\left(x_{i}, \gamma_{s}\right)\right]^{\prime}\left(\gamma-\gamma_{s}\right) \\
& \min _{\gamma}\left\{\sum_{i=1}^{N}\left(r_{i}-\left[\nabla r\left(x_{i}, \gamma_{s}\right)\right]^{\prime}\left(\gamma_{s}-\gamma\right)\right)^{2}\right\} .
\end{aligned}
$$

Where $\operatorname{\nabla r}\left(x_{i}, \gamma_{s}\right)$ is the derivative of the residual with respect to γ_{j}, a $N X p$ matrix.

Gauss-Newton Method III

- Let $\bar{\gamma}=\left(\gamma_{s}-\gamma\right)$
- The problem has the solution: $\bar{\gamma}=\left(\nabla r\left(x_{i}, \gamma_{s}\right)^{\prime} \nabla r\left(x_{i}, \gamma_{s}\right)\right)^{-1} \nabla r\left(x_{i}, \gamma_{s}\right)^{\prime} r\left(x_{i}, \gamma_{s}\right)$.
- It follows that the next guess is $\gamma_{s+1}=\gamma_{s}-\bar{\gamma}$.
- The algorithm requires $\nabla r\left(x_{i}, \gamma_{s}\right)$

Sometimes (polynomials) known analytically, use it!
Otherwise, use numerical differentiation.

Extensions

- Several extensions exist which deal with:

Exploiting second derivatives (Hessian).
Non-smooth functions (simplex methods).
Constrained non-linear programming.

A Simpler Approach

Alternatively, we can also iterate on γ until convergence:
(1) Construct a grid X.
(2) We will approximate $u^{\prime}(c(X))$ but we could just as well approximate $c(X)$.
(3) Guess an initial γ_{0}.
(9) Compute the right-hand side, RHS , of the Euler equation given γ_{0}.
(3) The FOC requires that $u^{\prime}\left(c_{t}\right)=R H S$.
(0) Given as norm SSR, the optimal γ satisfies $\left(X^{\prime} X\right)^{-1} X^{\prime} R H S$.
(3) Check for convergence and update $\gamma_{0}=\lambda \gamma_{0}+(1-\lambda) \underline{\underline{1}}$.

Global vs. Local Solutions

- Minimizers are usually designed to find a local minimum.
- So called genetic algorithms aim at finding the global minimum:

Find a local minimum, try other starting values and recompute local minimum.

Pattern search, simulated annealing.

PM with Multiple States

- We need to approximate $F(X):[-1,1]^{L} \rightarrow \mathbb{R}$.
- Polynomial function for L state variables (z, k in our case).
- We can use the Tensor product of Chebyshev polynomials:

$$
P_{n}\left(X ; \nu_{n}\right)=\sum_{l 1=0}^{n} \cdots \sum_{L=0}^{n} \nu_{l 1, \ldots, L} T_{l 1}\left(x_{1}\right) * * * T_{L}\left(x_{L}\right)
$$

If basis is orthogonal in a norm, tensor product is orthogonal in the product norm.

- Number of grid points growth exponentially in number of dimensions.

Smolyak's algorithm: Number of grid points growth polynomially in number of dimensions.

Smolyak's Algorithm

Sparse grid methods reduce computational burden.

- Idea is to choose those grid points from the Tensor grid that are important.
- In practice, Smolyak's algorithm has been found useful.
- Judd et al. (2014) provide a comprehensive discussion.

The Idea in two Dimensions

- The algorithm relies on nested sets of points: $S_{i} \subset S_{i+1} \forall i$.
- The extrema of the Chebychev-polynomialal is one class of these sets.
- Suppose we use $i 1=i 2=3$ for our $d=2$ dimensions. This yields a $5 X 5$ tensor grid.
- Smolyak's rule is to select only those points from the sets for which $d \leq i 1+i 2 \leq d+\mu$.
- μ is an accuracy parameter.

The Idea in two Dimensions

We need to interpolate our multidimensional function on this sparse grid. See Judd et al. (2014) for a discussion.

Algorithm for PM

(1) Guess coefficients of $P_{n}\left(X ; \nu_{n}\right)$.
(2) For each state, compute today's decisions.
(3) Using the budget constrained, compute the implied states tomorrow.
(9) Use $P_{n}\left(X ; \nu_{n}\right)$ to compute tomorrow's decisions (RHS of Euler eq.).
(5) Compute implied today's consumption decisions, $\bar{y}=R H S^{-1 / \gamma}$.
(0) Compute implied coefficients by $\left(\bar{X}^{\prime} \bar{X}\right)^{-1} \bar{X}^{\prime} \bar{y}$.
(1) Check convergence of coefficients and update.

Algorithm for PM II

(1) The previous algorithm is called fixed-point algorithm.
(2) Uses current guess of $P_{n}\left(X ; \nu_{n}\right)$ to compute LHS and RHS of FOC.
(3) Convenient because no solver needed. But convergence is tricky.
(9) Alternatively, use time-iteration algorithm.
(6) Use $P_{n}\left(X ; \nu_{n}\right)$ to compute tomorrow's policies.
(6) Solve for optimal policy today to solve FOCs (a non-linear problem), $\bar{y}=R H S^{-1 / \gamma}$.
(1) Compute implied coefficients by $\left(\bar{X}^{\prime} \bar{X}\right)^{-1} \bar{y}$.

Methods not Relying on FOCs

Projection Methods

Projection methods can also deal with borrowing constraints. Consider the Aiyagary economy:

$$
\begin{aligned}
V(a, \epsilon) & =\max _{c, a^{\prime}}\left\{U(c)+\beta \mathbb{E} V\left(a^{\prime}, \epsilon^{\prime}\right)\right\} \\
c+a^{\prime} & =\epsilon+a(1+r) \\
a^{\prime} & \geq \underline{a} \\
& \pi_{j k}\left(\epsilon^{\prime}=\epsilon^{j} \mid \epsilon=\epsilon^{k}\right)
\end{aligned}
$$

With solution

$$
c_{i t}= \begin{cases}\beta(1+r) \mathbb{E}_{t} c_{i t+1} & \text { if } a_{t+1} \geq \underline{a} \\ \epsilon+a(1+r)-\underline{a} & \text { otherwise }\end{cases}
$$

Algorithm

(1) Guess coefficients of $C(X)=P_{n}\left(X ; \nu_{n}\right)$.
(2) For each state, compute today's decisions.
(3) If $a_{t+1}<\underline{a}$ replace $c_{i t}=\epsilon+a(1+r)-\underline{a}$.
(9) Use $P_{n}\left(X ; \nu_{n}\right)$ to compute tomorrow's decisions (RHS of Euler eq.).
(5) Compute implied today's consumption decisions, $\bar{y}=R H S^{-1 / \gamma}$.
(6) If $a_{t+1}<\underline{a}$ replace $c_{i t}=\epsilon+a(1+r)-\underline{a}$.
(1) Compute implied coefficients by $\left(\bar{X}^{\prime} \bar{X}\right)^{-1} \bar{y}$.
(8) Check convergence of coefficients and update.

Off-Grid Choices

(1) Define a grid, g_{n}, for your dynamic state with N points.
(2) Define a second grid, g_{m}, for possible choices with $M>N$ points.
(3) Some points of g_{m} are not part of g_{n}. Interpolation needed: If we know $V\left(x_{1}\right)$ and $V\left(x_{2}\right)$, what is $V\left(x_{0}\right)$ with $x_{1}<x_{0}<x_{2}$. Usually we use splines for this.
(9) Super quick: interpolation base points and interpolation weights stay constant.

Spline Approximation I

Before considering the specific issue of interpolation, consider general idea of splines. Think of spline approximation as again replacing an unknown function $f(x)$ by a know function $g(x)$.

- Polynomials assume $g(x) \approx f(x) \forall x \in[\underline{x}, \bar{x}]$.
- Splines fit polynomials for different regions of $[\underline{x}, \bar{x}]:\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right], \ldots$ By using $N-1$ splines, we assure $f\left(x_{i}\right)=g\left(x_{i}\right)$.

Spline Approximation II

- This local approach assures that a change in $x \gg x_{i}$ does little to $f\left(x_{i}\right)$.

Different Splines

Simplest is a polynomial of order one which is called piecewise linear spline.
For $x \in\left[x_{i}, x_{i+1}\right]$:

$$
f(x)=f\left(x_{i}\right)+\left(x-x_{i}\right) \frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}
$$

Different Splines II

The function is non-differentiable at the nodes. To avoid this, use cubic splines:

$$
f(x)=a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3} .
$$

- With n-segments, $4 n$ unknowns.

Different Splines II

The function is non-differentiable at the nodes. To avoid this, use cubic splines:

$$
f(x)=a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3} .
$$

- With n-segments, $4 n$ unknowns.
- $f\left(x_{i}\right)=g(x) \forall x_{i}$.
- assure differentiability.
- assure 2nd derivative.
- 2 free parameters left.

Interpolation

- Spline approximation gives us function defined on \mathbb{R}. Interpolation requires only specific points.
- One dimension:

I know $V\left(x_{1}\right)$ and $V\left(x_{2}\right)$.
I want to know $V\left(x_{0}\right)$ where $x_{1}<x_{0}<x_{2}$.
Use a function $V\left(x_{0}\right) \approx f\left(x_{1}, x_{2}, x_{0}, V\left(x_{1}\right), V\left(x_{2}\right)\right)$

- $V(x)$ needs to be continuous and monotone between grid points.
- Idea easily extended to n-dimensions:

Denote by $X_{0}^{n}=\left[x_{0}^{1}, \ldots, x_{0}^{n}\right]$.
$V\left(X_{0}^{n}\right) \approx f\left(X_{1}^{n}, X_{2}^{n}, X_{0}^{n}, V\left(X_{1}^{n}\right), V\left(X_{2}^{n}\right)\right)$

Linear Interpolation

- Simplest function is linear interpolation:

$$
\text { One dimension: } V\left(x_{0}\right)=V\left(x_{1}\right)+\frac{V\left(x_{2}\right)-V\left(x_{1}\right)}{x_{2}-x_{1}}\left(x_{0}-x_{1}\right)
$$

- The resulting linear spline approximation is not differentiable.
- Linear interpolation, by far the fastest!

Bilinear Interpolation

Define $d=\frac{1}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}$

$$
\begin{aligned}
V\left(x_{0}, y_{0}\right) & =d\left[V\left(x_{1}, y_{1}\right)\left(x_{2}-x_{0}\right)\left(y_{2}-y_{0}\right)+V\left(x_{2}, y_{1}\right)\left(x_{0}-x_{1}\right)\left(y_{2}-y_{0}\right)\right. \\
& \left.+V\left(x_{1}, y_{2}\right)\left(x_{2}-x_{0}\right)\left(y_{0}-y_{1}\right)+V\left(x_{2}, y_{2}\right)\left(x_{0}-x_{1}\right)\left(y_{0}-y_{1}\right)\right]
\end{aligned}
$$

Spline Interpolation

- When function is non-linear, more accurate functions available.
- As seen, cubic splines (Cubic Hermite Splines) assure first two derivatives at $V\left(x_{1}\right)$ and $V\left(x_{2}\right)$.
- In theory, can be extended to higher order derivatives.

Tsao and Tsitsiklis (1991) Multigrid

(1) Solve the model on a curse grid, yielding V^{0}.
(2) Increase number of grid points in each dimension by factor 2 .
(3) Obtain initial guess of value function by interpolating using V^{0}.
(9) Decrease critical value by factor of 2 .
(5) Perform value function iteration to obtain V^{1}.
(0) Repeat until desired grid size.

Golden Section Search

Consider again a simple household problem:

$$
\begin{aligned}
V(a, z) & =\max _{c, a^{\prime}}\left\{U(c)+\beta \mathbb{E} V\left(a^{\prime}, z^{\prime}\right)\right\} \\
c+a^{\prime} & =z+a(1+r) \\
\underline{x} & \leq a^{\prime} \leq \bar{x}
\end{aligned}
$$

- We know $W\left(a, a^{\prime}, z\right)=U\left(a^{\prime}\right)+\beta \mathbb{E}_{z} V\left(a^{\prime}, z^{\prime}\right)$ is concave.
- Find the maximum over a concave function in interval $\left[\underline{x^{\prime}}, \overline{x^{\prime}}\right]$.

Golden Section Search

- We know $a^{\prime *}$ is between $[A, D]$.
- Assume we evaluate $W(a, B)$ and $W(a, C)$

$$
W(a, B)>W(a, C) \text { so } a^{* *} \in[A, C] .
$$

Otherwise, $a^{* *} \in[B, D]$.
Only one new function evaluation.

Golden Section Search II

- How to choose B, C ?
- Find the maximum with minimum function evaluations.
- Choose intervals to have same length: $\overline{A C}=\overline{B D}$.
- Assure that: $p:=\frac{\overline{A C}}{\overline{A D}}=\frac{\overline{A_{1} C_{1}}}{\bar{A}_{1} D_{1}}$.

$$
p=\frac{\sqrt{5}-1}{2} \approx 0.618
$$

Golden Section Search Algorithm

(1) Set $A=\underline{x}, D=\bar{x}$. Compute:

$$
B=p A+(1-p) D, \quad C=(1-p) A+p D .
$$

(2) If $W(a, B)>W(a, C)$, replace D by C and C by B. Compute:

$$
B=p A+(1-p) D
$$

(3) Iterate until $|A-D|<$ crit.
B, C may be off grid points. Interpolation needed!

Endogenous Grid Points (EGM)

Consider the Aiyagari economy, where households face an exogenous borrowing constraint

$$
\begin{aligned}
V(a, \epsilon) & =\max _{c, a^{\prime}}\left\{U(c)+\beta \mathbb{E} V\left(a^{\prime}, \epsilon^{\prime}\right)\right\} \\
c+a^{\prime} & =\epsilon+a(1+r) \\
a^{\prime} & \geq \underline{a} \\
& \pi_{j k}\left(\epsilon^{\prime}=\epsilon^{j} \mid \epsilon=\epsilon^{k}\right)
\end{aligned}
$$

Endogenous Grid Points II

The first order condition implies

$$
\begin{aligned}
& U^{\prime}\left(\mathbf{c}\left(a_{t}, \epsilon_{t}\right)\right)=(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon_{t+1} \mid \epsilon_{t}\right) U^{\prime}\left(\mathbf{c}\left(a_{t+1}, \epsilon_{t+1}\right)\right) \\
& U^{\prime}\left(\mathbf{c}\left(a_{t}, \epsilon_{t}\right)\right)-(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon_{t+1} \mid \epsilon_{t}\right) U^{\prime}\left(\mathbf{c}\left(a_{t}+\epsilon_{t}-\mathbf{c}\left(a_{t}, \epsilon_{t}\right), \epsilon_{t+1}\right)\right)=0
\end{aligned}
$$

- This is (again) a root finding problem in optimal policy $c(a, \epsilon)$.
- Carroll (2006) insight: If we knew $c\left(a_{t+1}, \epsilon_{t+1}\right)$, simply a linear equation.

$$
\text { E.g., } c=\left((1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon_{t+1} \mid \epsilon_{t}\right) c\left(a_{t+1}, \epsilon_{t+1}\right)^{-\gamma}\right)^{-1 / \gamma}
$$

Endogenous Grid Points Algorithm

(1) Construct a grid of assets today, $a \in A$, and tomorrow $\mathbf{a} \in \mathcal{A}$ with $\mathbf{a}_{1}=\underline{a}$.
(2) Guess the policy function $c(\mathbf{a}, \epsilon)$.
(3) Solve $B(\mathbf{a}, \epsilon)=(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon^{\prime} \mid \epsilon\right) U^{\prime}\left(c\left(\mathbf{a}, \epsilon^{\prime}\right)\right)$.
(9) Solve for implied consumption today $c(\tilde{a}, \epsilon)=B(\mathbf{a}, \epsilon)^{-1 / \gamma}$.

Endogenous Grid Points Algorithm

(1) Construct a grid of assets today, $a \in A$, and tomorrow $\mathbf{a} \in \mathcal{A}$ with $\mathbf{a}_{1}=\underline{a}$.
(2) Guess the policy function $c(\mathbf{a}, \epsilon)$.
(3) Solve $B(\mathbf{a}, \epsilon)=(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon^{\prime} \mid \epsilon\right) U^{\prime}\left(c\left(\mathbf{a}, \epsilon^{\prime}\right)\right)$.
(1) Solve for implied consumption today $c(\tilde{a}, \epsilon)=B(\mathbf{a}, \epsilon)^{-1 / \gamma}$.
(5) From budget constraint: $\tilde{a}=\frac{c+\mathbf{a}-\epsilon}{1+r}$.

Endogenous Grid Points Algorithm

(1) Construct a grid of assets today, $a \in A$, and tomorrow $\mathbf{a} \in \mathcal{A}$ with $\mathbf{a}_{1}=\underline{a}$.
(2) Guess the policy function $c(\mathbf{a}, \epsilon)$.
(3) Solve $B(\mathbf{a}, \epsilon)=(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon^{\prime} \mid \epsilon\right) U^{\prime}\left(c\left(\mathbf{a}, \epsilon^{\prime}\right)\right)$.
(1) Solve for implied consumption today $c(\tilde{a}, \epsilon)=B(\mathbf{a}, \epsilon)^{-1 / \gamma}$.
(5) From budget constraint: $\tilde{a}=\frac{c+\mathbf{a}-\epsilon}{1+r}$.
(0) For $a \leq \tilde{a}(1): c=\epsilon+a(1+r)-\underline{a}$.

Endogenous Grid Points Algorithm

(1) Construct a grid of assets today, $a \in A$, and tomorrow $\mathbf{a} \in \mathcal{A}$ with $\mathbf{a}_{1}=\underline{a}$.
(2) Guess the policy function $c(\mathbf{a}, \epsilon)$.
(3) Solve $B(\mathbf{a}, \epsilon)=(1+r) \beta \sum_{j=1}^{N} \pi\left(\epsilon^{\prime} \mid \epsilon\right) U^{\prime}\left(c\left(\mathbf{a}, \epsilon^{\prime}\right)\right)$.
(1) Solve for implied consumption today $c(\tilde{a}, \epsilon)=B(\mathbf{a}, \epsilon)^{-1 / \gamma}$.
(5) From budget constraint: $\tilde{a}=\frac{c+\mathbf{a}-\epsilon}{1+r}$.
(0) For $a \leq \tilde{a}(1): c=\epsilon+a(1+r)-\underline{a}$.
(3) Interpolate $c(a, \epsilon)$ on $c(\tilde{a}, \epsilon)$.
(8) Replace initial guess and iterate until convergence.

Endogenous Grid Points Value Function

- Sometimes, we are not only interested in the policy, but also the value function.
- We can use the insight of EGM, to iterate on the value function.

$$
\begin{aligned}
\frac{\partial V(a, \epsilon)}{\partial a^{\prime}} & =\frac{\partial U(c)}{\partial c} \frac{\partial c}{\partial a^{\prime}}+\beta \frac{\partial \mathbb{E} V\left(a^{\prime}, \epsilon^{\prime}\right)}{\partial a^{\prime}}=0 \\
U^{\prime}(c) & =\beta \frac{\partial \mathbb{E} V\left(a^{\prime}, \epsilon^{\prime}\right)}{\partial a^{\prime}}
\end{aligned}
$$

Endogenous Grid Points Value Function II

(1) Construct a grid of assets today, $a \in A$, and tomorrow $\mathbf{a} \in \mathcal{A}$.
(2) Guess the expected value function tomorrow

$$
\hat{V}(\mathbf{a}, \epsilon)=\beta \sum_{j=1}^{N} \pi\left(\epsilon^{\prime} \mid \epsilon\right) V\left(\mathbf{a}, \epsilon^{\prime}\right)
$$

(3) Solve $B(\mathbf{a}, \epsilon)=\frac{\hat{V}\left(\mathbf{a}, \epsilon^{\prime}\right)}{\partial \mathbf{a}}$.
(9) Solve for implied consumption today $c(\tilde{a}, \epsilon)=B(\mathbf{a}, \epsilon)^{-1 / \gamma}$.
(5) From budget constraint: $\tilde{a}=\frac{c+\mathbf{a}-\epsilon}{1+r}$.
(6) For $a \leq \tilde{a}(1): c=\epsilon+a(1+r)-\underline{a}$.
(3) Interpolate $c(a, \epsilon)$ on $c(\tilde{a}, \epsilon)$.
(8) From budget constraint: $a^{\prime}(a, \epsilon)=(1+r) a-c(a, \epsilon)+\epsilon$.
(9) Obtain $\hat{V}\left(a^{\prime}, \epsilon\right)$ by interpolating on $\hat{V}(\mathbf{a}, \epsilon)$.
(10) Update value function: $V(a, \epsilon)=U(c)+\hat{V}\left(a^{\prime}, \epsilon\right)$.

Endogenous Grid Points, Two Choices

Barillas and Fernandez-Villaverde (2007) study problem similar to:

$$
\begin{aligned}
& V(a, z)=\max _{c, a^{\prime}, l}\left\{\frac{\left(c^{\theta}(1-l)^{1-\theta}\right)^{1-\tau}}{1-\tau}+\beta \mathbb{E} V\left(a^{\prime}, z^{\prime}\right)\right\} \\
& z^{\prime}=\rho z+\epsilon^{\prime} \\
& a^{\prime}+c=(1+r) a+l \exp (z) \\
& a^{\prime} \geq 0
\end{aligned}
$$

Endogenous Grid Points, Two Choices II

First order condition for asset next period:

$$
\theta \frac{\left(c^{\theta}(1-l)^{1-\theta}\right)^{1-\tau}}{c}=\beta \frac{\partial \mathbb{E}\left\{V\left(a^{\prime}, z^{\prime}\right)\right\}}{\partial a^{\prime}}:=\hat{V}
$$

This can be solved for consumption today:

$$
c_{t}=\left[\frac{\hat{V}}{\theta\left(1-I_{t}\right)^{(1-\theta)(1-\tau)}}\right]^{\frac{1}{\theta(1-\tau)-1}}
$$

Thus, as before, knowing \hat{V} (and I_{t}) yields a solution for consumption today.

Endogenous Grid Points, Two Choices III

First order condition for labor implies:

$$
\frac{1-\theta}{\theta} \frac{c_{t}}{1-l_{t}}=z_{t}
$$

Knowing consumption, we can solve for labor.

Endogenous Grid Points, Two Choices Algorithm

(1) Guess optimal policy for labor: $\phi_{l}(a, z)$.
(2) Solve the EGM algorithm for $\phi_{c}(a, z)$.
(3) Solve for $\phi_{l}(a, z)$ and update policy.
(9) Iterate until convergence.

Vectorizing Your Code

Consider again a simple household problem:

$$
\begin{aligned}
V(a, \epsilon) & =\max _{c, a^{\prime}}\left\{U(c)+\beta \mathbb{E} V\left(a^{\prime}, \epsilon^{\prime}\right)\right\} \\
c+a^{\prime} & =\epsilon+a(1+r) \\
a^{\prime} & \geq \underline{a} \\
& \pi_{j k}\left(\epsilon^{\prime}=\epsilon^{j} \mid \epsilon=\epsilon^{k}\right)
\end{aligned}
$$

Take an asset grid of 5000 points and a productivity grid of 3 points the problem takes:

- 147 seconds to solve on an $i 7-107002.9 \mathrm{GH}$ processor when written with loops.
- , for reasons explained below, 25 seconds when fully vectorized.

Parallelizing Your Code

- Many loop operations can be done simultaneously, instead of sequentially:

Solve value function at each grid point.
Simulate a Markov process.

- There are two broad types of parallizations:

Computer has several cores (local).
Server has several computers (cluster).

Matlab Parallelizing

Using several cores:
parpool('local',6)
parfor $i=1: 10$
$f(i)=\operatorname{VFI}(i)$;
end
poolobj $=\operatorname{gcp}($ 'nocreate'); delete(poolobj);

Using a cluster:
parpool('Name',22, 'AttachedFiles',
\{'VFI.m' 'FOC.m'\})
parfor $i=1: 10$
$f(i)=V F I(i)$;
end
poolobj $=\operatorname{gcp}($ 'nocreate');
delete(poolobj);

Efficiency of Parallelizing

The speed gain is significantly below $1 / N$:

- It can be even considerably slower than non-paralization.
- As memory needs to be passed to each worker at the same time, you may run into memory issues.
- Parallization creates overhead communication between Matlab and the different cores.
- Often, the efficiency loss is smallest when every single computation takes time.
- Because how things are organized on the RAM, it can matter over which dimension you loop.
- My computer has 8 cores. Using 6, computation time drops from 147 seconds to 69 seconds.

Going beyond Matlab

Interpreted Languages

Matlab is what is called an interpreted language:

- What does $B=\operatorname{sum}(A)$ mean in Matlab?

Reads the expression.
Checks what A is (one or more dimensions?)
Check, what $\operatorname{sum}()$ does for this type of argument.
Check if B exists or if it needs to be created.

- This is why loops are slow in Matlab.

Compiled Languages

This is different from compiled languages. Two famous exaples are Fortran and $\mathrm{C}++$:

- What does $B=\operatorname{sum}(A)$ mean in Fortran?
- At execution time, the compiler has translated this statement into machine code.

It has determined what A is.
It has made sure, A is a data type that $\operatorname{sum}()$ can be applied to.
It has made sure that B has been declared and can contain the result of $\operatorname{sum}(A)$.

The computer than just executes instruction by instruction.

Compiled Code in Matlab

- Some Matlab functions are compiled code.
- Matlab provides possibility to include your own compiled code as .mex functions.

Either $C++$ or Fortran.
Unfortunately the documentation is poor.

- This provides the opportunity to outsource computational expensive routines.
- While keeping the advantages of Matlab.
- Debugging is tedious.

Compiled Code in Matlab II

- Here, I show you how to use Windows Visual Studio together with an Intel compiler.
- There are also free of charge compilers (Windows Visual Studio Community is free of charge).
- Linux systems (Ubuntu) have compilers already installed

Our cluster runs on Ubuntu!

Visual Studio I

Visual Studio II

Visual Studio III

Visual Studio IV

```
D4 household_mex - Microsoft Visual Studio
File Edit View Project Build Debug Team Tools Test Analyze Window Help
```



```\(+x\)
```

$\begin{aligned} & \text { Idefine further variobles } \\ & \text { integer（4）}\end{aligned}:$ i1，i2，

real（8），dimension（na）

```
G (Globol Scope)
houschold＿mex．F90 \(=\mathrm{x}\)
\(\operatorname{rcol}(8)\) ，dimension（ \(\mathrm{no}, \mathrm{nz}\) ）：： \(\mathrm{EV}, \mathrm{Vnew}\)
（real（8），dimension（N＿x）：：xn＿prob cum，xul prob cuil
```



```
｜icall sub mexwritestring（＇nead works＇）
！initialization
do i1－1，no
do \(\frac{12-1, n z}{\mathrm{~V}(\mathrm{i} 1, \mathrm{i} 2)}=\)
（ \((11,12)=0 . \mathrm{dz}\)
end do
\(\left\lvert\, \begin{aligned} & \text { end do } \\ & \text { ！cell }\end{aligned}\right.\)
Icoll sub，rexdriteString（＇initialization warks＇）
do wile（crit
do i1 \(=1\), na
do i1 \(=1\) ，no
do \(12-1\),
\(\mathrm{EV}(\mathrm{il}, \mathrm{iz})-\mathrm{e}\) dB
end do
end do
do i1 \(=1\), nz ！stete
do \(\mathrm{j}-1, \mathrm{nz}\) ！transition
\(\mathrm{EV}(:, 11)=\mathrm{EV}(:, 11)+\mathrm{P}(11,1) \circ \mathrm{V}(:, 1)\)
and do
\(\mathrm{EV}=\) beta \({ }^{\circ} \mathrm{EV}\)
do \(11=1, \mathrm{ni} 1\) state
do i2－ 1 ，na ！state
do \(1=1\) ，na I Ichoice
\(W(J)=\log (\operatorname{cons}(12,1,11))+\mathrm{EV}(j, 11)\)
end oo
\(\operatorname{Vnew}(12,11)=\operatorname{maxval}(w)\)
end do
crit＝naxvel（abs（Vnew－V））
V －Vnew
I end do
coll sub＿nexaritestring（＇yF－1 works＇）
onn eimanalting

\section*{Visual Studio V}


\section*{Visual Studio VI}


\section*{Visual Studio VII}


\section*{Visual Studio IIX}


\section*{Visual Studio IX}


\section*{Visual Studio X}


\section*{Mex-file Computation Time}
- Solving the household problem with a mex-file takes 27 seconds.
- Much faster than the 147 seconds in Matlab.
- It is still slower than the 25 seconds from the fully vectorized version in Matlab. The reason is communication cost.
- However, full vectorization is often not feasible:
- Monte Carlo simulations.
- Large state spaces imply huge matrices stretching the RAM. A \(10000 \times 10000\) matrix is already 3.9 GB with double precision and 2.6 with single precision.
- Non-paralized code is easier to read.
- Non-paralized code can save on non-necessary computations.

\section*{Saving on Non-Necessary Computations}
- In our problem, most computations are not necessary.
- We know the policy function is monotone and the return function is concave.
- In Matlab a non-paralized smart code takes 0.16 seconds.
- a mex-file takes 0.04 seconds.
- These speed gains are extreme due to the regularity of the problem but you often know (or suspect) something about your problem.

\section*{From the CPU to the GPU}
- So far, we ask our computer to solve the problem on the computer processing unit (CPU).
- CPU's are designed to solve complex problems.
- It turns our, simpler problems can be more efficiently handled by the graphical processing unit (GPU).
- A GPU has a large amount of cores but only limited memory.
- I have a NVIDIA GeForce RTX 3060. This GPU has 3584 cores with 12GB RAM.
- Hence, the GPU is only useful for tasks that can be paralized.

\section*{From the CPU to the GPU}
- CUDA allows you to write your own programs based on \(C++\) as .cu files.
- You can embed these in Matlab as .mex files (Matlab: mexcuda) or .ptx files (Visual Studio).
- This, however, requires some advanced programing knowledge.
- The VFI-toolkit does it for you for a particular class of problems.
- With my NVIDIA GeForce RTX 3060, the earlier problem takes 3 seconds (down from 147 with the CPU).

\section*{More on GPU Code}
- Only 1024 threads can access what is called "shared memory" posing a limit to evaluate \(\max (\operatorname{abs}(\) Vnew - Vold \())\). Hence, \(\max (a b s(\) Vnew \(-\operatorname{Vold}))\) needs to be evaluated on the Host. When Matlab is the host, this produces overhead.
- It must be possible to paralize the function. This implies, you cannot exploit the monotonicity of the policy function.
- In the present case, we can still exploit concavity of the value function.

\section*{Summary of Speed}
- 147 seconds with for loops in Matlab.
- 69 seconds with parfor loop and 6 workers in Matlab.
- 25 seconds with vectorization in Matlab.
- 27 seconds with Fortan mex-file.
- 3 seconds with the VFI-toolkit (GPU).
- 0.37 seconds with smart code on the GPU.
- 0.16 seconds with smart code in Matlab.
- 0.04 seconds with smart code and a Fortan mex-file.

\section*{More on GPU Programming and Overhead}
- When working with the GPU, passing information between the "Host" and the "Device" creates overhead costs. Also Matlab creates overhead costs.
- Hence, you want to write the CUDA code as "complete" as possible.
- To understand the role of overhead, the next slide shows speeds when I decrease the asset grid size to 330 (but decrease the convergence criteria). I.e., every function evaluation is more simple but we do more.

\section*{Summary of Speed with fewer Grid Points}
- 9.65 seconds with for loops in Matlab.
- 9.82 seconds with parfor loop and 6 workers in Matlab.
- 2.14 seconds with vectorization in Matlab.
- 1.82 seconds with Fortan mex-file.
- 2.01 seconds with the VFI-toolkit (GPU).
- 0.17 seconds with smart code in Matlab.
- 0.03 seconds with smart code and a Fortan mex-file.
- 0.001 seconds with smart code and "complete" code on the GPU.
- There is a trade-off between paralization and overhead!

\section*{Accuracy of Numerical Approximation}

\section*{Accuracy of Numerical Approximation}

We would like to assess the accuracy of numerial solutions. One possibility are normalized Euler equation errors:
\[
E E=\frac{u^{\prime}\left(c_{t}\right)-\beta \mathbb{E} R_{t+1} u^{\prime}\left(c_{t+1}\right)}{u^{\prime}\left(c_{t}\right)}
\]

In the Neo-classical growth model:
\[
E E\left(k_{t}, z_{t}\right)=1-\frac{\left(\beta \mathbb{E}\left(\alpha Z_{t+1} \phi\left(k_{t}, z_{t}\right)^{\alpha-1}+1-\delta\right) u^{\prime}\left(c_{t+1}\right)\right)^{-1 / \gamma}}{c_{t}}
\]
- The error is defined at each grid point \(k_{i}, z_{j}\).
- It has a natural interpretation:

If \(E E_{i, j}=0.01\), the agent makes a \(1 \$\) mistake for every \(100 \$\) spend.

\section*{Dynamic Euler Equation Error}
- Euler equation error are a one period ahead error.
- But (small) errors may accumulate over time.

Simulate two time series with T periods:
(1) Simulate the series using policy function for consumption.
(2) Simulate an alternative series:

Compute rhs of Euler equation using numerical integration \((g)\).
Solve for \(c_{t}=g^{-1 / \gamma}\).
Solve for \(k_{t+1}=z_{t} k_{t}^{\alpha}+(1-\delta) k_{t}-c_{t}\).
(3) Compare the two series.

\section*{References}

Barillas, F. and J. Fernandez-Villaverde (2007): "A Generalization of the Endogenous Grid Method," Journal of Economic Dynamics and Control, 31, 2698-2712.
Carroll, C. D. (2006): "The Method of Endogenous Gridpoints for Solving Dynamic Stochastic Optimization Problems," Economics Letters, 91, 312-320.
Judd, K., L. Maliar, S. Maliar, and R. Valero (2014): "Smolyak Method for Solving Dynamic Economic Models: Lagrange Interpolation, Anisotropic Grid and Adaptive Domain," Journal of Economic Dynamics and Control, 44, 92-123.
Tsao, C.-S. and J. Tsitsiklis (1991): "An Optimal One-Way Multigrid Algorithm for Discrete Time Stochastic Control," IEEE Transaction on Automatic Control, 36, 898-914.```

